Tech24 Deals Web Search

Search results

  1. Results from the Tech24 Deals Content Network
  2. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    Moore–Penrose inverse. In mathematics, and in particular linear algebra, the Moore–Penrose inverse ‍ ‍ of a matrix ‍ ‍, often called the pseudoinverse, is the most widely known generalization of the inverse matrix. [1] It was independently described by E. H. Moore in 1920, [2] Arne Bjerhammar in 1951, [3] and Roger Penrose in 1955. [4]

  3. Transpose - Wikipedia

    en.wikipedia.org/wiki/Transpose

    In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix A by producing another matrix, often denoted by A T (among other notations). The transpose of a matrix was introduced in 1858 by the British mathematician Arthur Cayley.

  4. NumPy - Wikipedia

    en.wikipedia.org/wiki/NumPy

    NumPy addresses the slowness problem partly by providing multidimensional arrays and functions and operators that operate efficiently on arrays; using these requires rewriting some code, mostly inner loops, using NumPy. Using NumPy in Python gives functionality comparable to MATLAB since they are both interpreted, and they both allow the user ...

  5. Block matrix - Wikipedia

    en.wikipedia.org/wiki/Block_matrix

    Block matrix. hide. In mathematics, a block matrix or a partitioned matrix is a matrix that is interpreted as having been broken into sections called blocks or submatrices. [1] [2] Intuitively, a matrix interpreted as a block matrix can be visualized as the original matrix with a collection of horizontal and vertical lines, which break it up ...

  6. In-place matrix transposition - Wikipedia

    en.wikipedia.org/wiki/In-place_matrix_transposition

    In-place matrix transposition. In-place matrix transposition, also called in-situ matrix transposition, is the problem of transposing an N × M matrix in-place in computer memory, ideally with O (1) (bounded) additional storage, or at most with additional storage much less than NM. Typically, the matrix is assumed to be stored in row-major or ...

  7. Outer product - Wikipedia

    en.wikipedia.org/wiki/Outer_product

    In linear algebra, the outer product of two coordinate vectors is the matrix whose entries are all products of an element in the first vector with an element in the second vector. If the two coordinate vectors have dimensions n and m, then their outer product is an n × m matrix. More generally, given two tensors (multidimensional arrays of ...

  8. Row- and column-major order - Wikipedia

    en.wikipedia.org/wiki/Row-_and_column-major_order

    In computing, row-major order and column-major order are methods for storing multidimensional arrays in linear storage such as random access memory . The difference between the orders lies in which elements of an array are contiguous in memory. In row-major order, the consecutive elements of a row reside next to each other, whereas the same ...

  9. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    Dot product. In mathematics, the dot product or scalar product [note 1] is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors ), and returns a single number. In Euclidean geometry, the dot product of the Cartesian coordinates of two vectors is widely used. It is often called the inner product (or ...